

Restricted two-dimensional Walsh-Fejér means and generalizations

Károly Nagy

Keywords: two-dimensional Fourier series, Fejér means, Hardy spaces, maximal operator, Walsh system, Vilenkin sytem, Vilenkin space, representative product system.

1. Earlier results on trigonometric and Walsh system

n 1939 for double trigonometric Fourier series Marcinkiewicz and Zygmund proved the convergence almost everywhere of Fejér means $\sigma_n f$ of integrable functions, where the set of indices is inside a positive cone around the identical function, that **1**S

 $\beta^{-1} \le n_1/n_2 \le \beta$

is provided with some fixed parameter $\beta \geq 1$ [10]. More-

Let us define the *cone-like restriction sets*:

$$\mathbb{N}_{\alpha,\beta,1} := \left\{ n \in \mathbb{N}^2 : \frac{\alpha(n_1)}{\beta(n_1)} \le n_2 \le \alpha(n_1)\beta(n_1) \right\},$$
$$\mathbb{N}_{\alpha,\beta,2} := \left\{ n \in \mathbb{N}^2 : \frac{\alpha^{-1}(n_2)}{\beta(n_2)} \le n_1 \le \alpha^{-1}(n_2)\beta(n_2) \right\}.$$

Let $\beta(x) = \beta$ be a constant function. For i = 1, 2 set

 $\mathbb{N}_{\alpha,i} := \{\mathbb{N}_{\alpha,\beta,i} : \beta > 1\}.$

For a fixed $i \in \{1, 2\}$, $\mathbb{N}_{\alpha, i}$ is said to be weaker than $\mathbb{N}_{\alpha, 3-i}$, if for all $L \in \mathbb{N}_{\alpha,i}$, there exists an $\tilde{L} \in \mathbb{N}_{\alpha,3-i}$ such that $L \subset L$. (It is denoted by $\mathbb{N}_{\alpha,i} \prec \mathbb{N}_{\alpha,3-i}$)

We have a class of one-parameter martingales $f = (f_{\overline{n}_1}, n_1 \in \mathbb{N})$ with respect to the σ -algebras ($\mathcal{F}_{\overline{n_1}}$, $n_1 \in \mathbb{N}$). The σ -algebra is generated by the 2-dimensional rectangles $I_{n_1}(x^1) \times I_{n_2}(x^2)$ $((x^1, x^2) \in G^2).$

The maximal function of a martingale f is defined by

$$f^* = \sup_{n_1 \in \mathbf{N}} \left| f_{\overline{n}_1} \right|.$$

For 0 the*martingale Hardy space* $<math>H_p^{\alpha}(G^2)$ consists of all martingales for which $||f||_{H_p^{\alpha}} := ||f^*||_p < \infty$.

Here we give the next two theorems for two-dimensional Walsh-Fejér means only.

over, Jessen, Marcinkiewicz, Zygmund proved the convergence $\sigma_n f \to f$ almost everywhere without any restriction on the indices, but only for functions in $L \log^+ L$ [9]. In 2007, Gát gave a common generalization of these two result [2]. He defined the concept of cone-like sets by the help of cone restricted functions (CRF). For more details see Theorem 1, 2, 5 and Corollary 6.

Weisz extended this result to higher dimensions, to Cesàro and Riesz means and proved that the maximal operator is bounded from the Hardy space H_p to the space L_p for $p > p_0 =$ $\max\{1/(\alpha_j + 1) : j = 1, ..., d\}$ [18].

In 1992, for double Walsh-Fourier series Móricz, Schipp and Wade proved that $\sigma_n f$ converge to f a.e. in the Pringsheim sense (that is, no restriction on the indices other than $\min(n_1, n_2) \to \infty$) for all functions $f \in L \log^+ L$ [11]. Later, Gát proved that the theorem of Móricz, Schipp and Wade can not be sharpened. Namely, let $\delta: [0, +\infty) \rightarrow [0, +\infty)$ be a measurable function with property $\lim_{\infty} \delta = 0$, then there exists a function $f \in L \log^+ L \delta(L)$ such that $\sigma_n f$ does not converge to f a.e. as $\min(n_1, n_2) \to \infty$ [3].

In 1996, Gát, Weisz proved the convergence almost everywhere for Fejér means $\sigma_n f$ of integrable functions, where the set of indices is inside a positive cone [4, 19].

2. Representative product systems

et $m := (m_k, k \in \mathbb{N})$ be a sequence of positive integers such L that $m_k \ge 2$ and G_k be a finite group with order m_k , $(k \in \mathbb{N})$ (it is important to note that G_k could be a non-commutative group, as well). Suppose that each group has discrete topology and normalized Haar measure μ_k .

If $\mathbb{N}_{\alpha,1} \prec \mathbb{N}_{\alpha,2}$ and $\mathbb{N}_{\alpha,2} \prec \mathbb{N}_{\alpha,1}$, then we say that $\mathbb{N}_{\alpha,1}$ and $\mathbb{N}_{\alpha,2}$ are equivalent and denote this by $\mathbb{N}_{\alpha,1} \sim \mathbb{N}_{\alpha,2}$.

The function α is called a *cone-like restriction function* (CRF), if $\mathbb{N}_{\alpha,1} \sim \mathbb{N}_{\alpha,2}.$

Let us set $\mathbb{N}_{\alpha} := \mathbb{N}_{\alpha,1} \cup \mathbb{N}_{\alpha,2}$.

A function α is CRF if and only if there exist $\zeta, \gamma_1, \gamma_2 > 1$ such that

 $\gamma_1 \alpha(x) \le \alpha(\zeta x) \le \gamma_2 \alpha(x)$

holds for each $x \ge 1$.

Let us define the maximal operator

$$\sigma_L^* f := \sup_{n \in L} |\sigma_n f|.$$

The next theorem was proven for trigonometric system by Gát [2], for Walsh-Paley system by Gát and Nagy [6], for representative product systems [12] and Vilenkin-like systems [13] by Nagy. The main tool is a special type of Calderon-Zygmund decomposition lemma.

Theorem 1 Let α be CRF, $L \in \mathbb{N}_{\alpha}$. Then the operator σ_L^* is of weak type (1, 1).

Theorem 2 Let α be CRF, $L \in \mathbb{N}_{\alpha}$. Then for any $f \in L^1$ the equality

$$\lim_{\substack{\wedge n \to \infty \\ n \in L}} \sigma_n f = f$$

The next theorem belongs to Weisz for Walsh system [17].

Theorem 7 The maximal operator σ_L^* is bounded from H_p to L_p for 1/2 and is of weak type <math>(1, 1).

Recently, the next theorem is reached by the author [14].

Theorem 8 Let α be CRF. The maximal operator σ_L^* is not bounded from the Hardy space $H_{1/2}^{\alpha}$ to the space $L_{1/2}$.

We mention that Weisz reached his result for (C, α) means of d-dimensional Vilenkin-Fourier series.

Recently, Theorem 7 and 8 are proven for Walsh-Kaczmarz system by the author [15].

If we choose $\alpha(x) = x$ the identical function and $\beta(x) = \beta$ a constant function (where $\beta \geq 1$), then Theorem 7 is reached for Walsh-Paley system by Weisz [19], for Walsh-Kaczmarz system by Simon [16] and for the character system of 2-adic integers by Gát and Nagy [7].

Bibliography

[1] Blahota, I., Gát, G., Pointwise convergence of double Vilenkin-Fejér means, Studia Sci. Math. Hungar. 36 (2000), 49-63.

- [2] Gát, G., Pointwise convergence of cone-like restricted twodimensional (C,1) means of trigonometric Fourier series, J. Approx. Theory 149 (2007) 74-102.
- [3] Gát, G., On the divergence of the (C, 1) means of double Walsh series, Proc. Amer. Math. Soc., 128 (6) (1996), 1711-1720.

Let G_m be the compact group formed by the complete direct product of the groups G_k with the product of the topologies, operations and measures (μ). G is called a bounded group if the sequence $m = (m_k, k \in \mathbf{N})$ is bounded.

Let ψ be the *representative product system* on G_m . The system ψ is the character system of G_m . For more details see [8].

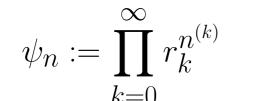
We have to note that the representative product system contains the Walsh and Vilenkin system as special case.

3. Vilenkin spaces

et $m = (m_k : k \in \mathbb{N})$ be a sequence of natural numbers, L which members are greater than 1. Let G_{m_k} be a set of cardinality m_k . We supply each set G_{m_k} with the discrete topology and the measure μ_k which is defined by $\mu_k(\{i\}) = 1/m_k$ for all $i \in G_{m_k}$. Let G_m be the compact set formed by the complete direct product of the sets G_{m_k} with the product measure and the product topology.

 G_m is called a Vilenkin space. It is important to note that *there* is no operation defined on the Vilenkin space.

The *Vilenkin-like system* $\psi := (\psi_n : n \in \mathbb{N})$ by



holds a.e.

If we choose $\alpha(x) := x$ and $\beta(x) = \beta$ (where $\beta \ge 1$ is a constant) then we get the next corollary of Theorem 2. It was proven for trigonometric system by Marcinkiewicz and Zygmund [10], for Walsh system by Weisz [19] and Gát [4], for Vilenkin system (ψ_{α} system) Gát and Blahota [1], for Walsh-Kaczmarz system by Simon [16].

Corollary 3 Let $f \in L^1$ and $\beta \ge 1$ be a fixed parameter. Then the relation

$$\lim_{\substack{\wedge n \to \infty \\ \beta^{-1} \le n_1/n_2 \le \beta}} \sigma_n f = f \quad a.e$$

holds.

Corollary 4 Let α be CRF and $L \in \mathbb{N}_{\alpha}$. Then the operator σ_L^* is of type (p, p) for all 1 .

The next theorem was proven for trigonometric system by Gát [2], for Walsh-Paley system by Gát and Nagy [6].

Theorem 5 Let α be CRF, $\beta \colon [1, +\infty) \to [1, +\infty)$ be a monotone increasing function with property $\lim_{\infty} \beta = +\infty$, and $\delta : [1, +\infty) \rightarrow [0, +\infty)$ be a measurable function with property $\lim_{\infty} \delta = 0$. Let $L := \mathbb{N}_{\alpha,\beta,1}$ or $L := \mathbb{N}_{\alpha,\beta,2}$. Then there exists a function $f \in L^1 \log^+ L\delta(L)$ such that

> $\limsup \sigma_n f = +\infty \quad holds \ a.e.$ $\stackrel{\wedge n \to \infty}{\underset{n \in L}{\to}}$

Corollary 6 Let α be CRF, $\beta \colon [1, +\infty) \to [1, +\infty)$ be a monotone increasing function with property $\beta(1) > 1$, and L :=

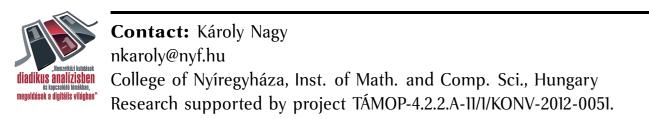
- [4] Gát, G., Pointwise convergence of the Cesàro means of double Walsh series, Annales Univ. Sci. Budapest., Sect. Comp. 16 (1996)
- [5] Gát, G., On(C, 1) summability for Vilenkin-like systems, Studia Mathematica 144 (2) (2001) 101-120.
- [6] Gát, G., Nagy, K., Pointwise convergence of cone-like restricted two-dimensional Fejér means of Walsh-Fourier series, Acta Math. Sinica, English Series 26 (12) (2010) 2295-2304.
- [7] Gát, G., Nagy, K., On the maximal operators of Fejér means with respect to the character system of the group of 2-adic integers in Hardy spaces, Mat. Zametki (submitted).
- [8] Toledo, R., Recent developments on approximation theory on CTD groups, Karáné, G. (ed.) et al., Topics in algebra, analysis and geometry. Proceedings of the Gyula Strommer national memorial conference, Balatonfüred, Hungary, May 1-5, 1999. Budapest: BPR Kiadó. 177-184, 2000.
- [9] Jessen, B., Marcinkiewicz, J., Zygmund, A., Note on the dif*ferentiability of multiple integrals,* Found. Math. 25 (1935) 217-234.
- [10] Marcinkiewicz, J., Zygmund, A., *On the summability of double* Fourier series, Found. Math. 32 (1939) 112-139.
- [11] Móricz, F., Schipp, F. Wade, W.R., Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc., 329 (1), (1992) 131-140.
- [12] Nagy, K., Almost everywhere convergence of cone-like restricted double Fejér means on compact totally disconnected groups, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 27 (2011) 267-277.

where r_k^n is the generalized Rademacher system. For the original definition see [5].

The Vilenkin-like system is a generalization of the Walsh and Vilenkin system, the character system of the group of 2-adic (*m*adic) integers, the representative product systems, the UDMD (unitary dyadic martingale difference) systems and the UCP (universal contractive projection) system introduced by Schipp and other systems.

4. Cone-like sets

et $\alpha \colon [1, +\infty) \to [1, +\infty)$ be a strictly monotone increasing **L** continuous function with property $\lim_{\infty} \alpha = +\infty$, $\alpha(1) = -\infty$ 1, and $\beta: [1, +\infty) \rightarrow [1, +\infty)$ be a monotone increasing function with property $\beta(1) > 1$.



 $\mathbb{N}_{\alpha,\beta,1}$ or $L := \mathbb{N}_{\alpha,\beta,2}$. Then

$$\limsup_{\substack{\wedge n \to \infty \\ n \in L}} \sigma_n f = +\infty$$

holds a.e. for all $f \in L^1$ if and only if the function β is not bounded.

5. Hardy spaces

n 2011, Weisz defined a new type martingale Hardy space depending on the function α [17]. The original definition of Weisz is given for dimension d and for Vilenkin group. Here we present the two-dimensional version of it and for Walsh group only.

For a given $n_1 \in \mathbb{N}$ set $n_2 := \lfloor \log_2 \alpha(2^{n_1}) \rfloor$, that is, n_2 is the order of $\alpha(2^{n_1})$ (this means that $2^{n_2} \leq \alpha(2^{n_1}) < 2^{n_2+1}$). Let $\overline{n}_1 := (n_1, n_2).$

[13] Nagy, K., Almost everywhere convergence of cone-like restricted two-dimensional Fejér means with respect to Vilenkin*like systems,* Algebra i Analiz 25 (4) (2013) 125-138.

[14] Nagy, K., On the restricted summability of two-dimensional Walsh-Fejér means, Publ. Math. Debrecen (2014) (to appear).

[15] Nagy, K., On the restricted summability of Walsh-Kaczmarz-*Fejér means*, Georgian Mathematical Journal (submitted).

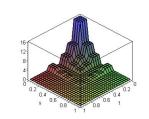
[16] Simon, P., *Cesàro summability with respect to two-parameter* Walsh system, Monatsh. Math. 131 (2000), 321-334.

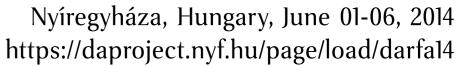
[17] Weisz, F., *Restricted summability of multi-dimensional* Vilenkin-Fourier series, Annales Univ. Sci. Budapest., Sect. Comp. 35 (2011), 305-317.

[18] Weisz, F., *Restricted summability of Fourier series and Hardy* spaces, Acta Sci. Math. (Szeged), 75 (2009), 219-231.

[19] Weisz, F., Cesàro summability of two-dimensional Walsh-

Fourier series, Trans. Amer. Math. Soc. 348 (1996) Conference on Dyadic Analysis and Related Field with





Applications (DARFA14)